Transcriptome Analysis of the Oil-Rich Tea Plant, Camellia oleifera, Reveals Candidate Genes Related to Lipid Metabolism

نویسندگان

  • En-Hua Xia
  • Jian-Jun Jiang
  • Hui Huang
  • Li-Ping Zhang
  • Hai-Bin Zhang
  • Li-Zhi Gao
چکیده

BACKGROUND Rapidly driven by the need for developing sustainable sources of nutritionally important fatty acids and the rising concerns about environmental impacts after using fossil oil, oil-plants have received increasing awareness nowadays. As an important oil-rich plant in China, Camellia oleifera has played a vital role in providing nutritional applications, biofuel productions and chemical feedstocks. However, the lack of C. oleifera genome sequences and little genetic information have largely hampered the urgent needs for efficient utilization of the abundant germplasms towards modern breeding efforts of this woody oil-plant. RESULTS Here, using the 454 GS-FLX sequencing platform, we generated approximately 600,000 RNA-Seq reads from four tissues of C. oleifera. These reads were trimmed and assembled into 104,842 non-redundant putative transcripts with a total length of ∼38.9 Mb, representing more than 218-fold of all the C. oleifera sequences currently deposited in the GenBank (as of March 2014). Based on the BLAST similarity searches, nearly 42.6% transcripts could be annotated with known genes, conserved domains, or Gene Ontology (GO) terms. Comparisons with the cultivated tea tree, C. sinensis, identified 3,022 pairs of orthologs, of which 211 exhibited the evidence under positive selection. Pathway analysis detected the majority of genes potentially related to lipid metabolism. Evolutionary analysis of omega-6 fatty acid desaturase (FAD2) genes among 20 oil-plants unexpectedly suggests that a parallel evolution may occur between C. oleifera and Olea oleifera. Additionally, more than 2,300 simple sequence repeats (SSRs) and 20,200 single-nucleotide polymorphisms (SNPs) were detected in the C. oleifera transcriptome. CONCLUSIONS The generated transcriptome represents a considerable increase in the number of sequences deposited in the public databases, providing an unprecedented opportunity to discover all related-genes associated with lipid metabolic pathway in C. oleifera. It will greatly enhance the generation of new varieties of C. oleifera with increased yields and high quality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification and Expression of Fructose-1,6-Bisphosphate Aldolase Genes and Their Relations to Oil Content in Developing Seeds of Tea Oil Tree (Camellia oleifera)

Tea oil tree (Camellia oleifera, Co) provides a fine edible oil source in China. Tea oil from the seeds is very beneficial to human health. Fructose-1,6-bisphosphate aldolase (FBA) hydrolyzes fructose-1,6-bisphosphate into dihydroxyacetone phosphate and glyceraldehyde 3-phosphate, two critical metabolites for oil biosynthesis. The objectives of this study were to identify FBA genes and investig...

متن کامل

Transcriptome analysis of the tea oil camellia (Camellia oleifera) reveals candidate drought stress genes

BACKGROUND The tea-oil camellia (Camellia oleifera) is the most important oil plant in southern China, and has a strong resistance to drought and barren soil. Understanding the molecular mechanisms of drought tolerance would greatly promote its cultivation and molecular breeding. RESULTS In total, we obtained 76,585 unigenes with an average length of 810 bp and an N50 of 1,092 bp. We mapped a...

متن کامل

Seed Transcriptomics Analysis in Camellia oleifera Uncovers Genes Associated with Oil Content and Fatty Acid Composition

Camellia oleifera is a major tree species for producing edible oil. Its seed oil is well known for the high level of oleic acids; however, little is known regarding the molecular mechanism of lipid biosynthesis in C. oleifera. Here, we measured the oil contents and fatty acid (FA) compositions at four developmental stages and investigated the global gene expression profiles through transcriptom...

متن کامل

Antioxidant activity and bioactive compounds of tea seed (Camellia oleifera Abel.) oil.

The oil of tea seed (Camellia oleifera Abel.) is used extensively in China as cooking oil. The objectives of this study were to investigate the antioxidant activity of tea seed oil and its active compounds. Of the five solvent extracts, methanol extract of tea seed oil exhibited the highest yield and the strongest antioxidant activity as determined by DPPH scavenging activity and Trolox equival...

متن کامل

Development of an in Vitro System to Simulate the Adsorption of Self-Emulsifying Tea (Camellia oleifera) Seed Oil.

In this study, tea (Camellia oleifera) seed oil was formulated into self-emulsifying oil formulations (SEOF) to enhance the aqueous dispersibility and intestinal retention to achieve higher bioavailability. Self-emulsifying tea seed oils were developed by using different concentrations of lecithin in combination with surfactant blends (Span(®)80 and Tween(®)80). The lecithin/surfactant systems ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014